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Abstract—Graph clustering plays an important role in data mining. Based on an input data graph, data points are partitioned into
clusters. However, most existing methods keep the data graph fixed during the clustering procedure, so they are limited to exploit the
implied data manifold and highly dependent on the initial graph construction. Inspired by the recent development on manifold learning,
this paper proposes an Adaptive Consistency Propagation (ACP) method for graph clustering. In order to utilize the features captured
from different perspectives, we further put forward the Multi-view version of the ACP model (MACP). The main contributions are
threefold: (1) the manifold structure of input data is sufficiently exploited by propagating the topological connectivities between data
points from near to far; (2) the optimal graph for clustering is learned by taking graph learning as a part of the optimization procedure;
(3) the negotiation among the heterogeneous features is captured by the multi-view clustering model. Extensive experiments on
real-world datasets validate the effectiveness of the proposed methods on both single- and multi-view clustering, and show their

superior performance over the state-of-the-arts.

Index Terms—Clustering, Manifold Learning, Graph Learning, Consistency Propagation

1 INTRODUCTION

Clustering is a fundamental task in the field of data min-
ing with various applications, and has attracted many
researchers in the past several decades. The objective of
clustering is to divide the data points into different clusters.
To achieve this goal, plenty of methods have been proposed,
including k-means clustering [1], hierarchical clustering [2],
spectral clustering [3], spectral embedded clustering [4],
maximum margin clustering [5], support vector cluster-
ing [6], normalized cut [7], multi-view clustering [8], Non-
negative Matrix Factorization [9], efc. Among the existing
approaches, graph-based clustering methods (e.g., Ratio-
cut [10], Normalized-cut [7]) have achieved relatively good
performance because of the utilization of manifold informa-
tion, and been widely used in various applications, such
as image segmentation [11] and protein sequence cluster-
ing [12].

Most of existing graph-based clustering methods [3],
[13], [14], [15], [16], [17] first construct a data graph accord-
ing to the pairwise similarities of points, and then perform
graph-theoretic optimization on the data graph. The two-
stage processing brings three major drawbacks. First, in the
data graph, the similarity is large only for the neighbors.
However, for data with manifold structure, the far away
points may also keep high consistency if they are linked by
consecutive neighbors. Therefore, these methods are limited
to discover the underlying data structure. Second, once
the data graph is constructed, they are fixed during the
clustering. Then traditional methods are unable to learn
the optimal graph for clustering, and tend to fail if the
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initial graph is constructed with low quality. Third, the
graph-theoretic optimization can not produce the clustering
results directly, so a post-processing (e.g., k-means) has to be
followed, which makes the result deviated from the optimal
solution. More recently, some methods [18], [19], [20], [21]
are proposed to tackle the last two problems. During the
optimization stage, they update the data graph adaptively.
In this way, graph learning is successfully integrated into
the clustering procedure. Benefited from graph learning,
these method are more robust to the initial graph quality.
However, these methods still suffer from the first problem.

In this paper, a new graph clustering method, namely
Adaptive Consistency Propagation (ACP) is developed to
tackle the above issues. The multi-view version of the ACP
method is also developed to deal with the data obtained
from different feature extractors. The main contributions of
this study are summarized as follows.

(1) The topological consistency of points are fully cap-
tured to investigate the data manifold. By propagating the
consistency through neighbors, the proposed method is
suitable to handle data with manifold structures.

(2) Graph learning is jointly combined into the clustering
framework. The data graph is optimized adaptively in the
optimization stage, so the clustering is less affected by the
quality of the initial graph.

(3) An multi-view version of the proposed model is de-
signed, which learns the correlation between the multi-view
data and integrates them with the optimal combination.

The rest of this paper is organized as follows. Section 2
introduces the Adaptive Consistency Propagation method,
and describes an efficient alternative algorithm to optimize
the proposed problem. Section 5 provides the experimental
results on several datasets. The parameter sensitivity are
discussed in Section 6. And the conclusions are summarized
in Section 7.

Notations: Throughout the paper, vectors are written
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as lowercase, and matrices are written as uppercase. For
matrix M, the (i, j)-th element of M is denoted by M,;,
and the trace of M is denoted by Tr(M). For vector z, its i-
th element is denoted as z;, and the L2-norm of z is denoted
by ||z|]2- M > 0 and z > 0 mean that all the elements of M
and z are equal to or larger than zero. The transpose of M
and z are denoted by M7 and z” respectively. I indicates
the identity matrix.

2 PRELIMINARY

For a better clustering performance, it’s essential to in-
vestigate the manifold structure implied within the input
data [22]. Recently, a Propagation-Based Manifold Learning
(PBML) method [23] is presented for crowd motion detec-
tion, and has shown satisfying performance. In this section,
the PBML method is first revisited as a preliminary.

2.1 Propagation-Based Manifold Learning Method Re-
visited

The Propagation-Based Manifold Learning method (PBML)
proposed by Wang et al. [23] aims to learn the topological
relationship of individuals in crowd scene. Given a simi-
larity graph G € R™*" (n is the number of individuals)
of individuals, PBML assumes that individuals with large
similarity should share similar topological relevance to any
other point. And the objective function of PBML is defined
as

) 1 n
min o > Gk(Si; — Si)® + 8IS — 1|7, )

i\j,k=1

where S € R™*" is the desired topological relationship
matrix. In the above equation, the first term ensures that
individual j and k share similar topological relationship
with individual ¢ if j and k are similar. And the second
term prevents the trivial solution, where all the elements in
S share the same value.

According to Eq. (1), the topological consistency is prop-
agated through neighbors with high similarities, then the
far away individuals will keep close relationship if they are
linked by consecutive neighbors. And it performs well on
crowd motion detection. However, the obtained topological
relationship matrix S does not indicate the explicit cluster
structures, so post-processing is necessary to divide the
points into clusters. Moreover, it can not utilize the prior
of cluster number, which is always given in the graph
clustering literature. Thus, the PBML method can not be
used for clustering tasks directly.

3 ADAPTIVE CONSISTENCY PROPAGATION

In this section, we extend PBML method to the domain
of graph clustering and propose the Adaptive Consistency
Propagation (ACP) method.

3.1 Methodology

As pointed out by Mohar et al. [24], the graph S € R™*"
will contain exactly ¢ connected components if the rank of
its Laplacian matrix Lg is n — ¢. Supposing the number of
points is n, and the desired cluster number is ¢, the data

2

graph S can be considered as an indicator matrix, where
the points from the same cluster are connected into the
same component. According to the recent graph clustering
methods [18], [19], [20], [21], if we impose the constraint
rank(Lg) = n — ¢ on Eq. (1), the clustering task can be
accomplished once the optimal S is obtained, without the
need of performing post-processing. So the objective can be
defined as

1
min o > Gik(Si —Su)® + 8IS — 1|7,
irjk=1 2

s.t.rank(Lg) =n —¢, S > 0, Z Sij =1
j

where Lg is the Laplacian matrix of S. Then the cluster
number prior c¢ is successfully utilized in problem (2). We
also constrain that the sum of each row of S is one, and
each element of S is non-negative. In problem (2), if point
j is connected with many similar neighbors, it will affect
the objective value to a large extent. In order to treat each
point equally, we propose normalized version of Eq. (2) as
follows:

1 & Si; Sik o 2
min Gjr(—== - —==)" +BlIS - 1|7,
S 2 i,j,;zl \/Djj Dkk (3)

s.t.rank(Lg) =n —¢,S > 0, Z Sij =1,
J

where D is the degree matrix of G.

Problem (3) is difficult to solve since the rank constraint
depends on S. As Nie et al. [18] pointed out, rank(Lg) = n—
cisequivalent to > 7 ; 0;(Lg) = 0, where 0;(Lg) is the i-th
smallest eigenvalue of Ls. Then problem (3) is transformed
into

1 & Sij Sik
min - Gjr(—== — )+ BlISs —1||%
s 2 i,j,;:l J ,/Djj \/Dkk
+ 223 04(L), )

i=1
s.t.S > 0, ZSU = 1,
J

where M is a large enough parameter to enforce

Zfi::l 0 (LS) =0.
With Ky Fan’s Theorem [25], we have

c ) _ . T
>, oi(Ls) FGR&}ETF:IIY(F LsF), (5

where F is an orthonormal vector that minimizes the value
of Tr(FTLgF).

Combining Eq. (4) and Eq. (5), we get the following
problem
i Su
D;; Dk

+ 2ATr(FTLgF),

5.6.8 >0 S;i=1,FeR" FIF=1
S el ’27 ] 9 c ) )

)? + BIIS — 1|f%

(6)

which is much easier to solve compared with problem (4).
In Eq. (6), the graph S propagates the consistency
through neighbors, and pulls the far away points together if
they are linked by the similar points. Moreover, the cluster
structure is represented explicitly in S. So the desired S
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can be treated as the cluster indicator. Once the optimal S
is learned, the final clustering results are obtained. In the
following part, an alternating approach is proposed to solve
problem (6) and learn the optimal S adaptively.

3.2 Optimization Strategy

In this work, the input data graph G is firstly constructed
with an efficient method [18], which builds a sparse and
scale invariant affinity matrix according to the points’ Eu-
clidean distances. In problem (6), both S and F need to be
optimized. Then we propose to fix one variable and solve
another one iteratively.

Fix S update F

When S is fixed, problem (6) becomes

min Tr(FTLgF). @)

FeRnxe FTF=I

Because F is orthogonal, we have min Tr(F7 LgF) equal to
the sum of the ¢ smallest eigenvalues of Lg. Therefore, the
optimal F is consist of the c eigenvectors of Lg associated
with the c smallest eigenvalues.

Fix F update S

According to spectral analysis theory [3], we have

ZHf £]15845, 8)

where f; € R"*! is a vector with its j-th element equal to
F;;. Then the objective function (6) becomes

msinZ[ Z Gjn(——= BY (S —1;)?
j=1

i=1 ]k 1

+>\Z|\f

S.t.Sij 2 O,ZS” = 1.
J

2Tr(FTLgF) =

k )2 +
vD VD

/138 ]

)

Note that the above problem is independent for different
1, denoting s; € R™*1 with its j-th element as S;;, and
denoting e; € R™*! with the j-th element as I;;, we can
solve the following problem for each ¢ separately:

min  s7(I-D 2GD" ?)s;+8||s; —e;||2+s m;, (10)

s;>0,s71=1
where 1 € R™*! is a vector with all its elements as 1, and
m; € R"*! is a vector with the j-th element equal to A||f; —
1
f;||2. Denoting matrix (8 + 1)I — D 2GD" 2 as A, and
denoting vector 25e; — m; as b, problem (10) can be easily
transformed into
min
s;>0,s71=1

sT'As; —s!b. (11)

Problem (11) can be solved by optimizing the following
problem

min sT'Az —s!'b.
s,v,ZO,sZTl:l,z:s,;

(12)

Since A is a positive definite matrix, according to the Aug-
mented Largrange Method (ALM) [26], the above problem
is equivalent to the following problem

min

(13)
si1=1,5;>0,z

1
sTAz—sTb+Llls; —2+ Lol

3

where p € R1*! and a € R"*! are parameters. We propose
to update s; and z iteratively.

When fixing s;, problem (13) becomes an unconstrained
optimization problem. Taking the derivative of Eq. (13) w.r.t.
z to zero, we have

1
Z=8; — ;(ATsi +a). (14)

When fixing z, problem (13) is simplified into the follow-
ing problem
Az —-b
2 (9

min
sf1=1,s;>0

1
l|si + —a—z+
L

which is a close form problem and can be readily solved by
the optimization algorithm in [15]. The detailed algorithm
to solve problem (13) is described in Algorithm 1.

Algorithm 1 Algorithm to solve problem (13)
1: Set 1 < p < 2, initialize p > 0, o
2: repeat
3: Update z with Eq. (14).
4 Update s; by solving problem (15).
5: Update p by pu = pp.
6
7

Update a by o = a + u(s; — z).
: until Converge

4 MuLTI-VIEW ADAPTIVE CONSISTENCY PROPA-
GATION

In real world applications, objects could be represented
from multiple views. For example, in computer vision,
an image may be described by different features, such as
SIFT [27], HOG [28] and CENT [29]. Each feature captures
a specific statistical property, and it is necessary to integrate
these heterogeneous features and utilize the complementary
information. In this section, we propose the Multi-view
version of the ACP model (MACP).

4.1 Methodology

Supposing there are features captured from n, views, we
construct an affinity graph for each view and denote them as
G, GA, .. z“’ . We propose to integrate these graphs
to learn an optunal similarity matrix S, so the objective
function is rewritten as

min — w;, G —
SFW2Z ,]zk:l Dj])

+ B[S = I|I% + 2ATr(F' LsF),
£.8>0 Si;=1,F e R FIF =1,
s.t.8 > ,Zj ;

wzo,szU:L

where D(*) is the degree matrix of graph G(*). Each graph
G® is assigned with a weight w,, and we aim to learn
the optimal weight vector w = [w1, w2, - -+ ,wy,,]T € R™wx!
to combine these graphs. Through the learning of w, the
optimal linear combination of the graphs is exploited. Then
the clustering consistency across different views can be
achieved.

Sz’k 2
D5/

(16)
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4.2 Optimization Strategy

In MACP, the construction of graphs G, G(2) , G(0)
is similar to that of ACP. In the optimization, we solve S,
F and w alternatively. The optimization of F is the same
as the solution of problem (7). We mainly describe the
optimization of S and w.

Fix w, F update S

Similar to problem (9), the optimization of S is indepen-
dent for different 7, so the problem can be rewritten as

ST wi s

+ Bl[si —

where the definition of m; is the same as that in prob-
lem (10). After removing the irrelevant terms, problem (17)
is with the similar form to problem (11), and can be readily
solved by Algorithm 1.

Fix S, F update w

When updating w, problem (16) is simplified into

_pW T igep®”

min

si>0,s71=1 17)

el|3 + s m;,

S vy, Sij Sik
mln Z w;, ng J(v) _ = )2
v=1 7jk: 1 Djj ”Dkk (18)

s.t.wZO,Z Wy = 1.

; (U Sij Sik__\2
Denoting P 1G]k SR m) as p,, the above
problem is transformed into
Ny
minZw%pv
w v=1 (19)

s.t.w > O,Zv w, = 1.

Denoting a diagonal matrix P € R™*"*, problem (19) is
equivalent to
minw! Pw
w (20)
s.t.w > O,le =1.
Removing the constraint w > 0, the Lagrangian function of
problem (20) is

[':(an) = WTPW - T](WT]' - 1)v (21)

where 7 is the Lagrangian multiplier. According to the
Karush-Kuhn-Tucker (KKT) condition, we have L‘xm =
0. Together with the constraint w1 = 1, the optimal w can

be obtained as

L)
Wy = — —
Cpe s =
which satisfies the removed constraint w > 0 definitely.
By updating F,S and w iteratively, the graphs from
different views are integrated to obtain the consistent clus-
tering result.

(22)

5 EXPERIMENTS

In this section, we verify the clustering performance of
the proposed ACP and MACP respectively. The evaluation
is based on two widely used clustering metric: clustering
accuracy (ACC) [8] and Normalized Mutual Information
(NMI) [23]. For a fair comparison, we let all the competitors
use their best parameters.

4

5.1 Experimental Results of ACP on Single-View Clus-
tering

In this part, the performance of the proposed Adaptive
Consistency Propagation (ACP) method is evaluated on
real-world datasets.

Datasets: experiments are conducted on nine real-world
benchmarks: one object dataset, i.e., Coil20 [30], two face
datasets, i.e., Jaffe [31] and orlraws10P [32], three datasets
form UCI Machine Learning Repository [33], i.e., Yeast,
Mfeat-pix and Movement, and two biology datasets, i.e.,
Lung [34] and Carcinom [35].

Competitors: for a quantitative evaluation, the pro-
posed ACP is compared with 7 competitors, including k-
means [1], Non-negative matrix Matrix Factorization (N-
MF) [9], Normalized-cut (Ncut) [7], Simplex Sparse Rep-
resentation (SSR) [15], Constrained Laplacian Rank L1-
norm (CLR_L1) [18], Spectral Clustering with Single Kernel
(SCSK1) [19] and Similarity and Clustering with a Single
Kernel (SCSK2) [20]. For CLR_L1 and the proposed ACP, the
neighborhood size is set as 5 when constructing the input
data graph. And for Ncut, the data graph is built with the
self-tune Gaussian method [16]. For SCSK1 and SCSK?2, the
kernel is constructed as K (x,y) = exp(—||x — y||3/d?,...),
where d,,q. is the largest distance between the data points.
In addition, since Ncut, SCSK1 and SCSK2 involve k-means
as the post-processing, we repeat them for 30 times and re-
port the average performance. In our method, the parameter
B is set as 1 empirically, and the value of A is chosen in a
heuristic way according to the number of zero eigenvalues
in Lg [18].

Performance: the clustering results of different methods
are shown in Table 1, from which we can observe that ACP
achieves the highest ACC and NMI in most cases. Particu-
larly, on Yeast, Mfeat-pix and Carcinom, ACP outperforms
the second best method a lot. NCut relies highly on the input
affinity graph, so its performance may be adversely affected
by the graph quality. NMF does not require the data graph
as input, but it just emphasizes the global data structure
and fails to capture the local data structure. SSR, SCSK1
and SCSK2 are robust to the graph quality and show good
performance because they optimize the data graph during
the clustering procedure. But the obtained graphs cannot
be directly used as the indicator matrices, so they need
spectral clustering as the post-processing (different results
for every time of running). All the competitors neglect the
connectivity between the far away points, which makes
them fail to perceive the data manifold. The proposed ACP
sufficiently explores the manifold structure without any
post-processing, so it outperforms the competitors.

5.2 Experimental Results of MACP on Multi-View Clus-
tering

We also evaluate the Multi-view ACP (MACP) on multi-
view clustering, and compare its performance with the state-
of-the-art multi-view clustering methods.

Datasets: four benchmark multi-view clustering dataset-
s are used in the experiments, including MSRC-v1 [36],
Handwritten [37], Caltech101-7 and Caltech101-20 [38]. For
MSRC-vl dataset, following Nie et al. [39], 210 images
are chosen for clustering, which comes from 7 classes. We



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1
ACC/NMI of single-view clustering methods. The best results are in bold face.

k-means NMF NCut SSR CLR SCSK1 SCSK2 ACP
Coil20 0.55/0.71 0.43/0.55 0.48/0.64 0.69/0.82 0.82/0.90 0.68/0.80 0.66/0.79 0.84/0.93
Jaffe 0.74/0.80 0.66/0.67 0.74/0.79 0.61/0.69 0.96/0.95 0.95/0.94 0.81/0.85 0.97/0.96
orlraw10P 0.67/0.94 0.63/0.68 0.72/0.79 0.61/0.68 0.78/0.84 0.74/0.78 0.74/0.82 0.81/0.87
Yeast 0.36/0.23 0.30/0.14 0.31/0.22 0.23/0.11 0.34/0.13 0.37/0.24 0.37/0.25 0.44/0.30
Mfeatpix 0.71/0.71 0.42/0.35 0.71/0.70 0.66/0.74 0.87/0.88 0.66/0.72 0.77/0.79 0.94/0.89
Movement 0.44/0.57 0.41/0.47 0.43/0.57 0.21/0.34 0.43/0.59 0.53/0.60 0.46/0.58 0.51/0.63
Lung 0.67/0.50 0.57/0.37 0.55/0.42 0.72/0.53 0.79/0.49 0.67/0.44 0.84/0.66 0.88/0.64
Carcinom 0.64/0.66 0.73/0.74 0.67/0.71 0.45/0.56 0.65/0.67 0.78/0.76 0.77/0.79 0.84/0.81
TABLE 2
ACC/NMI of multi-view clustering methods. The best results are in bold face.
Co-reg RMSC MMSC AMGL IVA SCMK1 SCMK2 MACP
MSRC 0.70/0.60 0.67/0.59 0.71/0.63 0.72/0.65 0.73/0.66 0.76/0.69 0.73/0.65 0.79/0.71
Handwritten 0.79/0.82 0.77/0.75 0.84/0.86 0.79/0.83 0.85/0.87 0.87/0.88 0.83/0.86 0.89/0.91
Caltech101-7 0.43/0.37 0.59/0.52 0.70/0.58 0.60/0.54 0.67/0.57 0.51/0.40 0.55/0.49 0.74/0.62
Caltech101-20 0.48/0.55 0.51/0.59 0.52/0.60 0.49/0.57 0.50/0.59 0.54/0.62 0.56/0.63 0.59/0.66
extract 5 features, including Color Moment (CM), HOG, 1 0
GIST, LBP and CENT, for multi-view clustering. Handwrit- ngh—v—v‘—*ﬁ 0
ten dataset contains 2000 digit images from 10 classes. Each ol o oms
image is represented by 6 features: FOU, FAC, KAR, PIX, 9 o ‘”1 i
. 0.7 Q 075
ZER and MOR. Caltech101-7 and Caltech101-20 contains 1 < —
1474 and 2386 images respectively, and the features are * e ol oss 7 Handwiiten
Gabor, Wavelet Moments (WM), CENT, HOG, GIST, LBP. o8 veast o Caltech101-20
04 | 055‘ ‘
. . . B B
Competitors: the proposed MACP is compared with 7 (a) ACP (b) MACP

multi-view clustering methods, including Co-regularized
spectral clustering (Co-reg) [40], Robust Multiview Spectral
Clustering (RMSC) [41] and Multi-Modal Spectral Cluster-
ing (MMSC) [42], Autoweighted Multiple Graph Learning
(AMGL) [39], Iterative Views Agreement (IVA) [43], Spec-
tral Clustering with Multiple Kernels (SCMK1) [19] and
Similarity learning and Clustering with Multiple Kernel
(SCMK?2) [20]. Note that, SCMK1 and SCMK2 are the multi-
kernel version of SCSK1 and SCSK2 respectively, in experi-
ments we use the data graphs as the kernels. To reduce the
influence of initialization, some competitors are repeated for
30 times and the average results are reported. The parameter
£ in MACP is set as 1.

Performance: Table 2 show the quantitative results of
different methods, it can be seen that the proposed MACP
shows the best performance on all the datasets. Co-reg,
MMSC, IVA simply assign the equal weight for each view,
so they fail to find the optimal combination of the multi-
view graphs. RMSC assumes that each view is sufficient
to maintain most of the discriminative information, and
then learns the optimal graph by removing the noise within
each view. Therefore, it tends to be affected by the weak
views. AMGL, SCMK1 and SCMK2 learn the weight of
each view and find the desired linear combination, but they
cannot produce stable results because spectral clustering
is used for post-processing. The proposed MACP captures
the consistency propagation between points, and integrates
the graphs with the optimal combination to obtain the
clustering results directly.

Fig. 1. ACC curves of ACP and MACP with different values of 3.

6 DisScUSsSION

In this section, we investigate the effect of parameter in ACP
and MACP. As mentioned above, the parameter A is deter-
mined automatically in a heuristic way, so we only discuss
the impact of parameter /3, which controls the balance of the
smooth term and fitting term in Eq. (6) and Eq. (16). As we
vary the value of 8 from {1, 5, 10, 15, 20, 25}, the variances
of clustering accuracies are shown in Figure 1. As shown
in the figure, the performance of ACP and MACP are not
very sensitive to value of 3. So we simply set 3 to 1 in the
experiments.

7 CONCLUSION

In this paper, the Adaptive Consistency Propagation (ACP)
and its multi-view version MACP are proposed for clus-
tering. Most of the traditional methods only focus on the
data points with neighboring relationship, and keep the data
graph fixed during the optimization procedure. In our new
methods, the local consistency is propagated adaptively
from near to far, so the points from the same cluster can be
all pulled together. In addition, with a reasonable constraint,
ACP and MACP are able to learn the optimal graph for clus-
tering, and accomplish clustering simultaneously without
any post-processing. Comprehensive experiments on single-
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and multi-view clustering show the superior performance of
our methods on various kinds of datasets.
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